
Maps and projections

The surface of a sphere cannot be plotted onto a flat plane without some distortion. This was

proved by Gauss in 1827, but has always been the crucial issue for mapmakers and navigators

since the dawn of human civilisation.

Nowadays, we might take for granted some of the most ubiquitous maps that aid us in getting

around and understanding our world. But cartography and the projecting of the globe is an

area of maths that has far-reaching consequences.

To get started, let’s consider a real-world use case of cartography and imagine a ship sailing

across the Atlantic from Europe

to America.

We’ll set sail from Lisbon, and

ignoring all winds and currents,

travel due west. The question is

how far we will travel before

arriving near New York.

It’s natural to think of this journey

as a straight line, as that’s how we

perceive it travelling along and

how it might appear on some

maps. But considering that the

earth is a sphere, the course looks

more like this:

Travelling exactly west, the

journey is part of a circle of

latitude, making it easy to calculate the distance.

Knowing that the change in longitude across this journey is about 65 degrees, we can calculate

the length of the arc,  as the following:

(with C1 as the circumference of the circle the arc is a part of)
65
360 · 𝐶

1

This is where we have to consider the latitude. The largest possible circle of latitude on the

earth is the equator, where the circumference is the earth’s circumference, and the smallest

circles with theoretically zero circumference are at the poles. To work out latitudes in between,

we use trigonometry.



In this diagram, the circle is a cross

section of the earth along its axis,

so its radius is the earth’s radius.

The angle marked θ is the latitude,

which then creates a right angle

triangle from which we can work

out the radius of the circle at that

latitude.

The circumference of the circle of

latitude at 40° N is so𝐶
0
· 𝑐𝑜𝑠(θ)

the overall distance is:

(with C0 as the earth’s circumference)
65
360 · 𝐶

0
· 𝑐𝑜𝑠(40°)

Taking C0 as 25,000 miles, the distance would be about 3,450 miles.

This seems relatively straightforward, mainly because we can easily imagine the course on a

sphere. But most of the time we want to plot things like this on a flat map. This requires a

projection from the curved space to the Euclidean plane.

Take one of the earliest and simplest projections possible: the ‘plate careé’ projection. Nearly

2000 years old, this projection can map the sphere onto a flat plane in a simple way, and

produces a reasonable-looking result.

It takes the coordinates of points and structures on the globe and just plots them linearly as

Cartesian coordinates. This simple direct mapping leads some to describe it as ‘unprojected’.

But we mustn't forget that this, like all maps, still distorts the globe.

This map shows a bearing of 115°

from north, going from just off the

coast of Canada, to Australia.

Because the coordinates are just

mapped directly onto the flat plane,

the line’s gradient is easy to work out

- but it is not correct or

representative of the real course you



would take travelling along this bearing.

Here is a section of that same line

plotted onto a representation of a

sphere. Not only is it not actually a

straight line when we consider how it

curves along the earth’s surface, but it

does not even take the same path as

depicted on the plate careé.

The projected version ends the path

over a thousand miles away from

where, as we see on the sphere, you

would actually end up - on a

completely different side of Australia.

Being over a long distance, this could

seem like an extreme example, but the

truth is that even over short distances,

there is nontrivial distortion which

causes difficulties for travel and navigation.

This distortion, where straight lines on a map can’t predictably be used to plot a route, was a

real problem for navigators and sailors, and was ultimately solved in a number of different

ways, each with different side-effects. But to understand this, we need to look at why it is

distorted in the first place.

It actually links back to the first thing we considered: the lengths of lines of latitude. When we

plot the earth’s surface on a rectangle, all these lines end up parallel and of the same length.

This is an effect of ‘cylindrical’ projections, where the earth is (theoretically) put inside a

cylinder which is then unrolled.

The equator stays the same length, but every other circle is stretched outwards by a factor that

increases as we get closer to the poles. A given change in longitude at 40° north is shorter than

the same change in longitude around the equator, and an equivalent journey nearer the north

pole would be even shorter. Yet all three would be stretched to the same length on a

rectangular map.

The first person to solve part of this problem was Gerardus Mercator, whose 1569 map, known

as the ‘Mercator’ projection, is now one of the most well-known. But few appreciate the

ingenious mathematics that goes into it.



This is a standard Mercator map, based on the

principles of his Nova et Aucta Orbis Terrae
Descriptio ad Usum Navigantium Emendate
Accommodata published 450 years ago.

The main feature is that straight lines on the

map represent lines following a bearing on the

globe - these are called ‘loxodromes’ or

‘rhumb lines’.

We can see therefore that our bearing of 115°

is now plotted accurately and that it follows

the course we would expect.

Mercator’s loxodrome to straight line

mapping was the crucial element of the map,

and what justified its revolutionary

presentation: it helped sailors (who travelled on a fixed bearing from north) to plot their course

as a straight line.

The actual maths used today to calculate where to plot points on a Mercator map is quite

complicated. But we can approximate aspects of it with much simpler calculations - which is

indeed how the map was first constructed over a century before the invention of calculus.

Since the original distortion of all rectangular projections is caused by higher latitudes being

stretched out sideways, Mercator applied a correction factor to stretch the map upwards as

well so that the ‘aspect ratio’ so to speak remained the same.

A way to work this out can then be to take a

45° bearing that goes from the point (0, 0)

to the desired latitude. If we can work out

the change in longitude along this bearing

to get to that latitude, we will know that

latitude’s correction factor.

This diagram is an aid to understanding

how we might work out where to plot the

line of 50° north on a Mercator map.

We have specified a bearing of 45° so on

the map, the height should be the same as

the width.



It might be assumed that the difference in longitude is also 50°, but this is not the case because

not all lines of latitude are the same length.

As we know the lines of latitude are of length cos(θ) multiplied by the equator’s length, we can

construct a formula for approximating bearing courses as follows:

[4] ( is the change in latitude, is the change in𝑐𝑜𝑡(α) = ∆θ
∆λ·𝑐𝑜𝑠(θ) ∆θ ∆λ

longitude, and is the bearing angle )α

The issue here is the cos(θ) term as there is no single latitude to measure this at. Therefore the

exact solution requires integrating with t across the latitude range. But we can still1
𝑐𝑜𝑠(𝑡)

approximate an answer, which is especially accurate at low latitudes.

Specifying a line of gradient 1 and setting to be 45°, we simplify the above equation to solveα
the problem posed in the right angle triangle drawing:

( )∆λ = ∆θ
𝑐𝑜𝑠(θ) 𝑐𝑜𝑡(45°) = 1

Approximating θ as 25° for the denominator, we say that the difference in longitude will be

about 55.1°. We know, however, that the line has a gradient of 1 so, as it appears on the map,

the line of 50° N should also appear the equivalent of 55.1° away from the equator.

We can make this more accurate by slicing the calculation into a number of smaller sections

which we know a more precise value of θ for. When integrating for the exact result, we are

theoretically splitting it up into an infinite number of infinitely small sections for full precision.

It's worth noting at this point that the Mercator projection, whilst a significant breakthrough in

the world of cartography, is not perfect - no flat map can be. In particular, its main criticisms

surround the fact that it distorts the area of countries.

Since the polar regions are stretched sideways already, and Mercator’s map stretches them

upwards to correct for this, their areas are increased quite significantly compared to the

equatorial regions. The most famous example is how Greenland appears almost as large as

Africa despite being much smaller.

Sadly, of course, this has political consequences, and many since (including historian Arno

Peters, contributor to the equal-area ‘Gall-Peters’ projection) have blamed the Mercator map

for contributing towards Westerners’ dismissive attitudes towards Africa and South America.

The Mercator projection might be outdated for other reasons as well. Its central feature,

plotting constant bearings as straight lines, isn’t necessarily as useful to the modern navigator

as it was to sailors of the 16th century.



This is because a constant bearing (rhumb line) is not actually the shortest course between two

points on the globe. The quickest way of travelling between two locations, ignoring all

environmental factors, is the ‘great circle distance’ - an arc of a so-called ‘great circle’.

Great circles are circles around the earth with the same

radius as the earth, centred on the earth’s centre. Half of

a great circle (ie half of the earth’s circumference) is the

maximum possible distance between two points on the

earth’s surface.

When we look at our original journey over a short

distance at the same low latitude, the great circle

distance (green) of about 3,350 miles is marginally

shorter than our original latitudinal distance of 3,450

miles. But we can see clearly how great circle distance is

more efficient when considering flying over the north

pole.

Because they don’t follow a constant bearing,

great circle arcs appear as curves on the

Mercator projection which makes it much harder

to use it for navigating with aeroplanes or other

transport that usually follows the shortest

distance.

But one of the first ever map projections, the

‘gnomonic’ projection developed by the Greek

mathematician Thales over 2500 years ago, does

preserve great circles as straight lines. A

gnomonic projection centred on the north pole

can illustrate how great circles are efficient

paths.

In practice, the gnomonic projection is rarely used for normal

purposes because it shows only a fraction of the earth’s

surface and has unworkable distortion. But like all

projections, it shows a unique view of the world.

Since Thales, mapmakers have been devising new ways of

plotting the globe onto a flat plane. Some have become widely

used, and others have remained thought experiments. But all

have been examples of where mathematics can shape our

world.



References/sources

[1] https://en.wikipedia.org/wiki/Equirectangular_projection

[2] https://pubs.usgs.gov/pp/1453/report.pdf p116, p218

[3] https://www.math.ubc.ca/~israel/m103/mercator/mercator.html

[4] https://www.maths.usyd.edu.au/u/daners/publ/abstracts/mercator/mercator.pdf p4

[5] https://en.wikipedia.org/wiki/Great_circle

All maps and globes plotted with R, using coastline and country border points from

https://gadm.org/

https://en.wikipedia.org/wiki/Equirectangular_projection
https://pubs.usgs.gov/pp/1453/report.pdf
https://www.math.ubc.ca/~israel/m103/mercator/mercator.html
https://www.maths.usyd.edu.au/u/daners/publ/abstracts/mercator/mercator.pdf
https://en.wikipedia.org/wiki/Great_circle
https://gadm.org/

