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Knotty Chocolate Babka 
 

The first time you learnt how to make a knot was probably when tying up your shoelaces. 
There are many ways to do this, but all of them involve taking a piece of string and tying it up 
into a closed loop. While this seems elementary, there is a whole area of mathematics 
dedicated to studying different kinds of knots: Knot Theory. Mathematicians are interested in 
understanding how to recognise different knots and how we can classify them. 
 
When studying knots, it is important to have lots of pictures to help visualise what is going 
on. However, pieces of string are boring! We have instead chosen a slightly tastier 
representation of a knot: homemade chocolate babka. Babka is a traditional Jewish bread, 
which is rolled into a rope with layers of chocolate and shaped into various patterns. While 
most Jewish bakeries don’t tend to sell mathematical knots, we can learn a lot just by looking 
carefully at them. 

 
We will also use knot diagrams to help us, in case the chocolate swirls 
become distracting. When two strings cross, the string which goes over 
(brown) is drawn as a line, while the string which goes under (blue) is 
drawn as a broken line. 
 

The simplest knot possible is called the unknot, and it is 
essentially just a circle. Our babka representation has 
some turns in it to create a swirl, but we can easily unwind 
them to get a simple loop, shown by the diagram. 

 
Next, we have the trefoil, which is made by tying a 
simple overhand knot (as if you were tying up your 
shoelaces) and connecting the two loose ends.  
 
 
 

Our final two babka knots are 
slightly more fun. Before we 
stick the two ends of our 
dough ropes together, we first 
weave the rope in and out of 
itself, to create interesting 
patterns. 
 

The babka representations and diagrams help us see what 
the knot looks like. You might wonder whether there is a 
unique way to draw a particular knot. If there is, this could 
help us when we try to classify different knots. Let’s consider 
an example: are these two knots the same? 
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We can see that knot A is the trefoil, shown above. Knot B has a different drawing to A, 
however if you try making it out of some string (or babka dough), you can see how it is the 
same knot as A. Knot B is the trefoil, but the top loop has been twisted over itself. Since we 
can undo this action, we’re left with the same knot. 
 
So, if we can perform an ‘undoable’ action on a knot, this doesn’t actually change the knot 
we have. These actions are known as Reidemeister moves.  
 
There are 3 types of Reidemeister moves, which we will refer to as R1, R2 
and R3. All of these are easy to visualise.  
 
R1 is twisting or untwisting part of the knot, just like how we twisted the 
trefoil to get knot B. 
 
R2 moves two strings of the knot, so they either cross over each other at 
two points or don’t cross at all. 
 
R3 slides a string of the knot over a crossing point (of two other strings). 
You can see how the brown string slides from above the crossing point 
to below the crossing point when you apply R3. 
 
When we perform Reidemeister moves on a knot, we are simply twisting 
and moving parts of it, so it looks different, but is still the knot we started with. When we 
perform successive Reidemeister moves on the unknot, we can see how our final knot 
diagram looks very different to the initial one. 
 

 
 
So, we’ve answered our initial question: there does not exist a unique way to draw a knot, 
because Reidemeister moves change how they look. This creates an issue for us: how are 
we meant to classify different knots, if we don’t have a unique way of identifying them? What 
if the trefoil is simply the unknot, with a few Reidemeister twists and turns in it? 
 
To answer this question, we need a system to identify knots, which stays the same 
regardless of any Reidemeister moves. Mathematicians call these systems knot invariants, 
and there are various kinds. We will explore whether the trefoil and the unknot are the same, 
through our first knot invariant: tricolourability.  
 
When you zoom into a crossing point on a knot diagram, you can see that there are 3 parts, 
which we will call strands. A knot diagram is tricolourable if it satisfies two conditions: 

 
1. We can assign each strand a colour, so that at each 

crossing point either all the strands are the same 
colour, or they are 3 distinct colours. 

2. Overall, the knot diagram uses 3 distinct colours. 
 
We can try colouring our babka trefoil and unknot to 
understand whether the baked representations are tricolourable.  
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As we can see, our babka trefoil is 
tricolourable, as the diagram features 3 
colours and has 3 colours at each 
crossing point. Our babka unknot is not 
tricolourable as the diagram only features 
a single colour. 

 
What we now need to consider is whether tricolourability is actually invariant under 
Reidemeister moves. We can do this by simply looking at some more pictures.  
 
R1 preserves tricolourability, as twisting a piece of string doesn’t change our 
colouring. This is because a twist point only has 2 strands, so they must all 
be the same colour (as having 3 distinct colours is impossible), like the initial 
untwisted string. 
 
For R2, we have two cases to check. If we have two different 
coloured strings, when we perform R2 we simply add a new 
colour (green) to preserve tricolourability at each crossing. If 
we have two strings which are the same colour, under R2 all 
strands remain that colour. So, we can see how when we 
perform R2 on a tricolourable section we are always left with 
a tricolourable section. 
 
Finally, R3 preserves tricolourability as well. Sliding the green 
strand from above the crossing point to below the crossing point 
simply swaps the colours of the red and blue strands. This idea of 
‘swapping’ colours works for other cases as well. 
 

Thus, we can see that all Reidemeister moves preserve tricolourability. 
This is clear when we consider the unknot diagrams we produced earlier 
when performing Reidemeister moves: it is impossible to tricolour either 
of them.  

 
We now have all the ingredients ready to prove that the trefoil is not the unknot. 
 
Firstly, we know that our babka representation of the unknot is not tricolourable, and our 
babka representation of the trefoil is tricolourable. We also know that tricolourability is 
invariant under Reidemeister moves. This means that all representations of the unknot are 
not tricolourable, and all representations of the trefoil are tricolourable. For two knots to be 
equivalent, they need to need to be both tricolourable, or both not tricolourable. Since the 
unknot is always not tricolourable, and the trefoil is always tricolourable, it follows that these 
knots are not the same. 
 
So, we’ve not only answered our question, but we have also mathematically proven that the 
trefoil is different to the unknot, through exploring the knot invariant of tricolourability. Why 
stop there? Let’s explore another knot invariant: crossing numbers. 
 
The crossing number of a knot is the least number of 
crossing points in any drawing of a knot. We can see 
how the crossing number varies for the different 
diagrams we produced for the unknot. Each crossing 
point is represented by a green dot. Since we have an 
unknot diagram with 0 green dots, this must be the 
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unknot’s crossing number, as 0 is the least possible number of crossing points (since we 
can’t have negative crossing points). 
We can also look at our trefoil diagrams to consider how many 
crossing points they have. Trefoil A has 3 green dots while trefoil 
B has 4. Since we only care about the least number of crossing 
points, we know the trefoil’s crossing number is at most 3.  That 
is, it could be 0, 1, 2 or 3. We can produce infinitely many trefoil 
diagrams by performing successive Reidemeister moves, so 
how do we know what the least number of crossing points is? 

 
Let’s first take a closer look at knot diagrams with a 
crossing number of 1 and 2. When we draw a knot with a 
single crossing point, we see that this is simply the unknot 
with an R1 twist. Likewise, when we draw a knot with two 
crossing points, this is the unknot with an R2 move.  
 
We can see how it is impossible to have a knot with a 

crossing number of 1 or 2, as you can always reduce these knots to a diagram with 0 
crossing points: the unknot. This is helpful for us, as it narrows down the options for the 
trefoil’s crossing number- since it can’t be 1 or 2, it can only be 0 or 3. 
 
Now, we know that the trefoil is different to the unknot, from our tricolourability proof.  This 
means the trefoil and unknot cannot have the same crossing number, since crossing 
numbers are a knot invariant. Thus, it follows that the trefoil must have crossing number 3, 
as the unknot has crossing number 0. 
 
We now have two invariants which differentiate between 
the trefoil and the unknot: tricolourability and crossing 
numbers. So, if we are given a trefoil knot diagram, we 
can recognize that it is not the unknot. What if we 
generalised this idea? If we are given any knot diagram, 
is it possible to determine whether it is simply the 
unknot? We can see how tricky this could be by looking 
at Haken’s unknot (we promise we did create a babka 
version, however unfortunately the oven was too small to 
bake it). It looks incredibly complicated, but it is just an 
unknot with a huge number of Reidemeister moves.  
 
Wolfgang Haken proved the Unknot Theorem in 1961- that is, it is always possible to 
determine whether a given knot diagram is equivalent to the unknot. This can be done 
through an algorithm. An algorithm here is a list of instructions that takes a given question (is 
this knot the unknot?) and answers it in a finite amount of time. 
 
While several of these algorithms exist, in practice they are terribly unhelpful for 
mathematicians as they are performed in exponential time, where the length of running time 
grows exponentially as the algorithm inputs increase. Mathematicians are currently puzzling 
over the unsolved problem: can we recognize an unknot in polynomial time? Polynomials 
grow at a slower rate than exponentials, so the length of running time doesn’t increase as 
much. In other words, can we create an unknotting algorithm which can be run in a shorter 
timeframe? 
 
The famous geometer William Thurston once described this problem by saying, ‘A lot of 
people have thought about this question ... but this has been a very hard question to 
resolve.’ While the problem is still unsolved and incredibly challenging, there have been 
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some exciting recent developments. In 2021, Marc Lackenby was able to produce an 
unknotting algorithm which runs in quasi-polynomial time, which is still slower than 
polynomial time, however it is much faster than exponential time. This means 
mathematicians are closer to solving the problem, and are now working to shave off extra 
time by making the algorithm more efficient. 
 
So, we started off with a shoelace, some babka dough and a little bit of imagination, and we 
have been able to explore some exciting areas of mathematical research. Knot Theory is a 
rich area of mathematics which is creative, challenging and fun. We hope this exploration will 
prompt you to research even more. And, most importantly, bake some babka. 
 
 
Bibliography 

1. https://thegreatbritishbakeoff.co.uk/recipes/all/paul-hollywood-chocolate-babka/ 
2. Adams, C., The Knot Book. 
3. Gilbert, N. and Porter, T., Knots and Surfaces. 
4. http://web.math.ucsb.edu/~padraic/ucsb_2014_15/ccs_problem_solving_w2015/Tric

olorability.pdf 
5. https://www.maths.ox.ac.uk/node/38304 
6. https://www.youtube.com/watch?v=lVU8hae2T7Y 
7. https://www.youtube.com/watch?v=emKrcoW612Y 

 
 
 
 


