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On some level, at the very least, everyone has had some -
usually frustrating - encounter with knots in their day-to-day life.
Be it the fruitless attempts to disentangle a pair of intertwined
shoelaces, exasperation at the inevitable encoiling of a telephone
cable (which is almost obsolete, thanks to the dawn of the mobile
phone), or the looping of a headphone cord with no apparent cause,
the humble (yet infuriating) knot seems to have a habit of cropping
up where it is least expected (and often least desired), continuing
to baffle and to irritate in equal measures.

Frustration: a brief history (courtesy of BBC Focus)

To the mathematician, on the other hand, knots are objects of
profound elegance and beauty - and it is not difficult to see why.
Simplicity is always of the essence for mathematicians:
give-or-take, our job is less about seeing what is important to a
problem, but what is not - about how much extraneous “stuff” we can
remove from a problem whilst conserving the properties which matter,
and in a way that keeps it behaving in a way we ought to expect.
And, once you remove every unnecessary physical detail about knots,
what could possibly be more elegant than a single, unbroken line
coiling around itself in 3 dimensional space?

Moreover, mathematics is always (to some degree or other)
about reducing the reality which we exist within and experience on a
day-to-day grounding to pure abstraction - the mathematician’s home
turf. From this, we can make use of this sort of analogy to better



understand relationships between disparate areas which might seem
unexpected at a first glance. It is small wonder that the list of
knot theorists reads like a who’s-who of mathematics - from Gauss to
Conway - and that the field is still full of brilliant, and
fascinating personalities to this day. On a mathematical front,
knots have had an illustrious and somewhat dubious history of
bridging different areas of mathematics - combinatorics (the study
of counting, and constructing) to topology (the study of how objects
can be “like” each other in a meaningful way through continuous
changes), and even into quantum computing. In short, the more we
delve into mathematics, the more we realise that every road we go
down will, given enough time, lead to knot theory. Paradoxically,
for such a seemingly workaday, common-or-garden phenomenon, the
study of knots is one of remarkable depth and ingenuity, one so
simple it can be explained to anyone with a piece of string and
enough tenacity, yet so complex it continues to stump mathematicians
to this day.

And beyond their fascination on a mathematical basis, for
millennia the knot has enjoyed a universal status in various forms
of spiritual imagery and as an artistic motif, too. In Celtic art,
for example, the knot rears its head in illuminated manuscripts and
stone carvings where it holds deep religious connotations; and
meanwhile, one knot denominated the Endless Knot, having no
beginning or end, is symbolic of the cycle of rebirth in Buddhism.
And, in the 13th century, the pre-eminent house of Borromeo placed a
fascinating knot into their family crest, now known as the Borromean
links, which has the unusual property of being a Brunnian Link -
namely, that they are properly linked, yet if any ring is removed,
the remaining two will simply fall away!



Clockwise from top left: a stone Celtic Cross; a page from the
Book of Kells; the crest of the House of Borromeo (see the Blue
section in the lower left-hand side); and the Endless Knot motif (all
courtesy of WikiMedia Commons).



Borromeo, Borromeo, wherefore art thou Borromeo?: from linked to
unlinked (courtesy of WikiMedia Commons)

But before I proceed, it is probably helpful to have a little
guide as to what exactly is a knot, and what is definitely not a
knot (excuse the pun). It is a well-trodden injoke amongst
mathematicians that if you have the misfortune to walk up to a
topologist with your shoes tied together, they might promptly tell
you that they are not knotted together, but in fact tangled, and
walk off to wherever they are headed. And technically speaking, they
would not be incorrect - since both laces have ends, and are not
connected together in a loop, this means it qualifies as a tangle,
but not a knot. And to make matters even worse, if you are speaking
about interleaved strands in a loaf of bread, or in a plait, this is
not a knot, or even a tangle, but a braid - which is also of
interest to knot theorists, since by ‘looping’ a braid around, you
can obtain the relevant knot or link (which is just a generalisation
of a knot, which can have one or multiple looped pieces). And keep
in mind that, if this seems somewhat contrived to have so many
different words for pieces of string, please spare a thought for us
poor mathematicians, who have to wrangle1 with this every day.

1Contrary to popular belief, a wrangle is not a mathematical term, although
I certainly wish it was.



How long’s a piece of string? Clockwise from top left: a knot, a
tangle and a braid (courtesy of WikiMedia Commons)

From a braid to a knot (courtesy of Brilliant.org)



“So, now we know a thousand-and-one things which aren’t knots,
then what exactly is a knot?” I hear you cry! Well, it is usually
convenient to define a knot as an embedding of the circle in
3-dimensional space - namely the image of some continuous (unbroken)

embedding (where denotes the circle, and denotes 3γ:  𝑆1 → 𝑅3 𝑆1 𝑅3

dimensional space). The most trivial embedding of all - where we
just don’t knot it - is actually a knot in-and-of itself, too,
called the unknot. We also usually consider two knots to be the same
if there is a isotopy between them - which is just a movie which
shows one knot gradually, continuously transforming from one to the
other, without breaking the string, or passing it through itself -
or, more formally, some continuous function

Γ:  𝑆1 × [0,  1] → 𝑅3

where just means the position of the point p after timeΓ(𝑝,  𝑡)
t.

t = 0                t = 0.2              t = 0.4

t = 0.6               t = 0.8               t = 1

Making movies: frames from an isotopy between a coffee mug and a
doughnut (courtesy of WikiMedia Commons).



And in fact, this ‘movie’ trick is incredibly powerful. One
famous (and surprisingly recent) result that can be shown from this

is that Brunnian links (like the Borromean
link I mentioned earlier) cannot be made
from perfect circles - meaning that the most
common diagrams of the Borromean Links are,
in fact, all illusions! The proof goes as
follows: assume we can create a proper
Brunnian link with perfect circles. Then,
construct hemispheres in 4 dimensions which
have each circle as a base. It can then be
seen that they don’t intersect - so just
take 3-dimensional cross-sections of the
whole diagram, hemispheres and all. This

Use your illusion: then gives you a movie that shows each of
the Borromean links the links unlinking into separate circles -
(courtesy of WikiMedia which is impossible, since we assumed they
Commons) were linked to begin with! And it is this

kind of brilliant feat of imagination which
makes knot theory so fascinating to begin with.

However, although I think holograms would make this essay much
more enjoyable, working in 3-dimensions can be pretty unwieldy -
especially here of all places, where you are more-than-likely
reading this on a screen. So instead, for convenience's sake (and to
avoid tangling ourselves up in copious amounts of string), we
usually represent knots by a 2-dimensional diagram - which shows
which strands of the knot pass over or under each other. Obviously
there are infinitely many diagrams for the same knot, but usually we
try to choose the one with the smallest number of crossings - which
is known as the crossing number of a knot, or .𝑐(𝐾)



A tale of two knots: two diagrams of the unknot (courtesy of The
Horizon of Reason)

To formalise this slightly woolly notion of which knots are
the same or not the same, when there are potentially infinitely many
subtle variations on ways to get from one diagram to another, knot
theorists have the concept of the Reidemeister moves - a collection
of 3 local moves, which surprisingly are sufficient to get from any
diagram to any other diagram, provided that they represent the same
knot. Being an existence proof, it does not actually specify how
many moves you would require to get between equivalent knots, with

the current best upper bound of - which is a 31-digit(239𝑐(𝐾))11

number for as few as 3 crossings - only proven as recently as 2015.



The Type I, II and III Reidemeister moves (or, as I prefer, the
twist, poke and slide moves - courtesy of Fabrizio Benedetti)

But even with these moves at our disposal, being able to show
whether two knots are the same is no easy task - and in fact,
checking if a knot is equivalent to the unknot (known conveniently
as the unknotting problem) is widely believed, but not yet proven,
to be computationally intractable - meaning that it is impossible to
find an algorithm which could tell if a knot is the unknot after a
time which is at most some power of the number of crossings. And
even looks can be deceiving: in fact, in one famous table of over
100 knots up to 10 crossings, devised meticulously by Charles Newton
Little in the late 19th century, was found to have two identical
knots - now infamously known as the eponymous Perko pair - and
serving as a cautionary tale for mathematics students to this day.

Evil twins: the Perko Pair (courtesy of WikiMedia Commons)

So if we don’t have a chance to tell if two knots are the same,
how could we possibly fare better for recognising if they are
different? This is where invariants come into play - an extremely
versatile mathematical technique whereby we try to construct
properties of an object which remain the same even when the object
itself is changed. For example, in the case of isotopy as above, the
number of holes an object has remains the same even if the overall
shape might change.2 Although this kind of technique can’t
necessarily tell if things are the same (since two distinct objects
might be assigned the same invariant, unless it is a perfect

2 Although this is hardly any use in knot theory - considering that all
knots ostensibly have one hole!



invariant), it can tell if two objects are not - since two
equivalent objects could not possibly be mapped to the same
invariant. And what makes invariants especially suited for knots is
that to prove something is an invariant, we only need to show that
the property doesn’t change after each possible Reidemeister move!

One of the most intuitive knot invariants is known as
3-colourability - namely, whether it is possible to colour the arcs
(connected parts) of the knot so that at every crossing, there are
either 3 different colours or only 1, and exactly 3 colours are used
overall. This can be seen to be a knot invariant: we can always
tweak our colouring to ensure that the colouring condition still
holds. So, since the unknot is not 3-colourable (since fewer than 3
colours will be used), and since the trefoil is, not all knots are
equivalent to the unknot!3

Example of a 3-colourable knot, and a non 3-colourable knot. In
particular, these knots are not the same.

A “proof without words” that 3-colourability
stays the same after R2 moves. The proofs for
R1 and R3 moves are, in true mathematical
style, left as an exercise to the reader!

And, in fact, this method can be
generalised to a more powerful technique known
as Fox n-colourings. Here, instead of

3 Despite the fact that this might seem really obvious at first glance,
bear in mind that proving it beyond all reasonable doubt is actually quite
hard, as we’ve seen here - although a proof that ‘a knot is actually
knotted’ probably provides little solace to anyone who is actually trying
to undo one. Oh well.



assigning a colour to each arc, we assign a number modulo4 n, such
that at every crossing, the following
relation holds:

a + b ≡ 2c (mod n)

The invariant, in this case, is just
the number of distinct solutions where
the value of each arc is taken to be
between 0 and n - 1. And, in fact, we
can see that this
is incredibly
powerful: whilst

we cannot distinguish the Borromean links from
the unlink (just 3 unlinked circles) with
3-colouring (which is equivalent to the case n
= 3), we can do this with Fox colourings -
choosing n = 5, we end up 125 colourings for
the unlink (5 choices for each circle), and
only 5 for the Borromean links - and hence
showing that they are, in fact, linked after
all.

The late great J. H. Conway, with Alexander’s
Horned sphere (Courtesy of the New York Times)

However, a single number is usually
inadequate to distinguish between knots which might not yield to the
above techniques. What we need instead is a polynomial - an
expression which is a sum of the powers of some variable or

variables (so for example, is a polynomial in and1 + 2 · 𝑡−1 + 𝑥3 · 𝑡 𝑥 𝑡
). The earliest of these is by far the Alexander polynomial - named
after the late 19th-century American topologist James Waddell
Alexander II, who is also well known for his infamous Alexander
horned sphere, a notorious pathological object (namely, one which
haunts the nightmares of mathematicians). His polynomial, at any

4 If you aren’t familiar with modular arithmetic, just think of them as
considering two numbers to be the same modulo n (written as x ≡ y (mod n))
if they share the same remainder when dividing by n - so, for
example, 12 ≡ 33 (mod 7), both leaving remainder 5 when dividing by
7.



rate, is much more pleasant, and can be concocted with the following
recipe:

1) For each crossing, labelled as above, write down the following
equation:

c + tb - tc + a = 0

2) For each arc of the diagram, create a matrix (2-dimensional
array) of the coefficients from each equation in 1) - with a
row for each crossing, and a column for each arc;

3) Choose your least favourite row and column, and delete them;

4) Then just calculate the determinant5 of the matrix!

Remarkably, this does not depend upon choice of diagram (as long as
there are no closed loops). This polynomial, denoted , has nice∆

𝐾
(𝑡)

properties: firstly, that it is symmetric - namely, that

- the useful property that it behaves nicely with knot∆
𝐾

(𝑡) =  ∆
𝐾

( 1
𝑡 )

sums - if denotes the sum of two knots, then𝐾 # 𝐿
∆

𝐿#𝐾
(𝑡) = ∆

𝐿
(𝑡) · ∆

𝐾
(𝑡)

where is constructed by cutting a small ‘gap’ in each knot, and𝐾 # 𝐿
joining them together as below:

Joined in holy matrimony: the sum of two trefoil knots (courtesy of
WikiMedia Commons)

Curiously, we can define prime knots naturally from this
definition: namely, all knots K such that, if we have for𝐾 ~ 𝐿 # 𝐿'
knots and , then one of or are equivalent to the unknot𝐿 𝐿' 𝐿 𝐿'

5 A determinant is a single value constructed from a square (with as many
rows and columns) matrix. For a 2 x 2 matrix, this is the area of the
parallelogram formed by the vectors of each column.



(compare this with a number n being prime if, whenever ,𝑛 =  𝑎 × 𝑏
then one of or must equal 1). And in fact, from the Alexander𝑎 𝑏
polynomial, we can see that there are infinitely many prime knots: a
specific family of knots known as torus knots, which can be formed
by wrapping a piece of string around a torus, can be seen to have

Alexander polynomials which don’t
factorise, and hence have to be
prime knots!

Twisted: an example of a prime
torus knot (courtesy of WikiMedia
Commons)

On a historical aside, though, for
a lot of the 20th century,
interest in knot theory had more
or less evaporated. To understand

why, however, it is vital to know exactly why knot theory was
studied to begin with. The kind of knot theory we would recognise
today was invented by Lord Kelvin - of ‘degrees Kelvin’ fame - who
thought at the time that the distinct properties of each atom came
from a knotted hole in what was called the luminiferous aether - the
medium through which light was thought to travel. And as much as
this might seem ridiculous today, it had an immense amount of
credibility at the time, and leading scientists of the day -
including J. J. Thomson (who would go on to discover the electron)
and James Clerk Maxwell (who is celebrated for his unification of
electricity and magnetism) - and sparked a flurry of research into
knot theory, spearheaded by Peter Guthrie Tait, who published the
first tables of knots. Of course, in hindsight they were very far
from the truth - as was proven by the Michelson-Morley experiment,
acrimoniously dubbed “the most famous failed experiment of all time”
- and resulted in a mass abandonment of the knot theory gold rush.
In defence, it could also be argued that this false hypothesis was
no cul-de-sac - for, if no-one had pursued that avenue for thought,
it is likely that knot theory as we know it today might never have
existed in the first place.

In any case, this stasis continued until the pioneering work
of Vaughan Jones, a truly brilliant mathematician (who, ironically,
had a background in von Neumann algebras - a field closely related
to quantum physics) whose discoveries earned him the 1990 Field’s



medal - the highest accolade in mathematics, which, as a true New
Zealander, he received wearing an All Blacks rugby jersey. The
origins of his most lauded discovery, the Jones knot polynomial, are
still a mystery amongst mathematicians. Legend has it that the
result simply appeared one day on the department’s communal
blackboard with little fanfare at its arrival - despite rejuvenating
the entire field of knot theory. The result is a simple, recursive
formula: if we produce links , and by altering a single𝐿

+
𝐿

−
𝐿

0

crossing as shown, then the skein relation says that the Jones
polynomial should follow:

(𝑡1/2 − 𝑡−1/2)𝑉(𝐿
0
) = 𝑡−1 · 𝑉(𝐿

+
) − 𝑡 · 𝑉(𝐿

−
)

And as much as this might seem
less intuitive than the Alexander
polynomial - even to see that this
doesn’t depend upon how we apply the
relation - the resulting polynomial has
many more remarkable properties. For example, the Jones polynomial
can sometimes distinguish between a knot and its mirror image,
provided that they are distinct (known as chirality), which is never
true for Alexander polynomials.

Mirror mirror on the
wall: the trefoil knot
and its mirror image,
which is not isotopic to.
Although both knots have
the same Alexander
polynomial, they have
distinct Jones
polynomials (courtesy of
WikiMedia Commons)

Moreover, if a knot is alternating (i.e, goes over-under-over-under…
in reduced form, i.e, with no ‘loops’), then the coefficients of the
Jones polynomial will also be alternating (i.e, if you write

for and then will have𝑉(𝐿) = 𝑎
0
𝑡

𝑑
0 + 𝑎

1
𝑡

𝑑
1 + 𝑎

2
𝑡

𝑑
2 +... 𝑑

0
< 𝑑

1
< 𝑑

2
... 𝑎

𝑘
≠ 0 𝑎

𝑘

changing signs). In fact, this result settled the century-old
conjecture from P. G. Tait that reduced diagrams of alternating
links cannot be drawn with fewer crossings - testament to the
immense power of Jones’ discovery.



Jones' result was also lauded for bringing back attention to
low-dimensional topology - and the connection between the two
subjects is not immediately obvious. Earlier than Jones, William
Thurston (who also won the Fields Medal) had found a link between
3-dimensional manifolds (a topological object which looks like
3-dimensional space from every point) and knot theory - giving rise
to a fascinating invariant known as hyperbolic volume (which is

sadly beyond the scope of this essay).

Bubble, bubble, toil and trouble:
a Seifert surface in all its glory
(courtesy of WikiMedia Commons)

But even earlier than that, seminal
topologist Herbert Seifert had discovered
the eponymous Seifert surfaces - a subject
of fervent research to this day, and
which look as if someone had made a knot
out of wire and dipped it into bubble

mixture. A Seifert surface is simply an oriented (i.e, with 2 sides,
unlike a Mobius strip, which is unoriented) surface whose boundary
is the knot itself. Properties of this manifold actually yielded
methods to approach the unknotting problem which was mentioned
earlier - which on the front of it is completely unexpected. This
makes more sense when we see that this gives rise to a useful knot
invariant known as the knot genus, denoted - which is just the𝑔(𝐾)
number of holes that the resulting surface has (and which is
miraculously invariant on the choice of surface, and how we draw the
knot). It turns out that the only knot with genus 0 is the unknot -
and furthermore, that

𝑔(𝐾#𝐿) = 𝑔(𝐾) + 𝑔(𝐿)
- i.e, that the number of holes for knots K and L ‘adds up’ when we
take their knot sum. This shows that, in fact, inverse knots cannot
exist - since if we did have K, L such that K # L is the unknot,
then both K and L have to be the unknot - since otherwise,

(since they can’t both be the unknot), but𝑔(𝐾) + 𝑔(𝐿) ≥ 1
- which is impossible! Which all begs the question - is𝑔(𝑢𝑛𝑘𝑛𝑜𝑡) =  0

it to be, or knot to be?


