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If one day you happened to be walking through a 196,883 dimensional space,
you might come across quite a fascinating object that mathematicians till this
day still don’t know why exists. This of course sounds absurd and perhaps
arbitrary (for example why the number 196883?) but the ”existence” of such
an object and its significance is a spectacle in the wonderful branch of maths
known as abstract algebra, more specifically: group theory.

Most people, when hearing the word ”maths”, picture numbers, calculus or
maybe trigonometry and these are certainly all valid and are founded very
much in every day problems and reality. Group theory is a less obvious case
and is a prime example of how ”maths” can founded in concepts seemingly
detached from numbers and our classic notion of the subject. To begin to
make sense of what group theory is about, let’s consider an equilateral triangle
and the following question: ”how many ways can I transform the shape such
that it looks the same after the transformation has been applied?”.

1



After a bit of thought we could say that there are 6 ”actions” that leave the
triangle looking the same. These 6 actions constitute a group and more
technically what is known as the dihedral group of order 6 (D6) with the order
being the size or number of elements in the group. We have a rotation through
120◦ and through 240◦. We also have a reflection along the three vertices. The
6th one corresponds to ”doing nothing”, a rotation through 0◦ or 360◦ if you
will, which technically counts as a symmetry as it leaves the triangle
unchanged (or ”preserves its structure” if we want to be more abstract) and it
is known in the field as the ”identity” element. So you may now think that it’s
all about shapes and geometry. Well, usually in maths we tend to start with a
very specific case and then abstract the concept as far as possible. Thus to say
that group theory is all about rotating and reflecting shapes would be a gross
injustice. But why could the symmetries of an object such as a triangle
potentially be useful? It isn’t so much about the triangle itself but more so
how its intrinsic symmetries and elements of its ”group” stretch far beyond
this particular example of a shape. To demonstrate what this means, let’s now
consider the permutations of 3 objects in a row. With an elementary
knowledge of combinatorics we can say that there are 6 or 3! permutations.
The fact that the two totals amount to 6 in both cases is no coincidence and it
is by the definition of a group that we can bring together two distant areas of
maths (combinatorics and Euclidean geometry) into one. Through the lens of
group theory, these two very distinct problems are in fact identical and we call
their respective groups, that is, the symmetries of the equilateral triangle and
the number of ways to permute a row of three objects, isomorphic (the same).

If you’re still not convinced or at least intrigued, group theory has been used to
solve the Rubik’s cube and is required in physics to derive an incredible result
known as Noether’s Theorem which states that for a symmetric transformation
in a physical system (i.e if I displace an object by a certain amount leaving it
unchanged) there must have been a quantity that was conserved and therefore
there exists a corresponding conservation law for that system (e.g the
conservation of energy). So what is the formal definition of a group? A group
is a set closed under a binary operation such that for all elements within the
set, the binary operation is associative, there exists an identity element and
there exists, corresponding to each element, an inverse element. The binary
operation can be defined as anything and stretches far beyond our normal 4
operations along with the elements which don’t have to be numbers at all
(they could be matrices for example). It’s best to mathematically write out
the conditions for a group as they are easiest understood in that form:

a ∗ (b ∗ c) = (a ∗ b) ∗ c

e ∗ a = a ∗ e = a

a ∗ a′ = a′ ∗ a = e
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e here denotes the identity element, a′ denotes the inverse element of a and *
denotes the binary operation. These conditions may seem random but it’s
worth recognising that based on such simple axioms an entire branch of
mathematics is birthed. It may come as a surprise to you that despite the
multitude of ”things” that can be assigned as a group, mathematicians have
managed to classify every single type of group that could ever exist. But how
is this possible? To take number theory as an example, its building blocks
consist of the prime numbers and as such, every single number can be
expressed as a product of them. This isn’t too dissimilar from group theory as
a special type of ”building block” group exists: simple groups. The key
distinction here is that there are finite categories of them (not a finite number)
and it is also worth nothing that in this context we are referring to finite
groups e.g the set of integers under addition would not count since it is
infinite. Below is the ”periodic table” of finite simple groups:

To truly appreciate how remarkable this table is, it is worth briefly examining
the history behind the quest to classify all of such simple groups. It began in
the early 1800s when Évariste Galois, arguably the founder of group theory,
discovered the first of the simple groups and ended nearly 200 years later in
2004. By compiling roughly 500 papers from more than 100 mathematicians
spanning more than 15,000 pages, it was proved that the groups that had been
discovered were all the ones that could possibly exist. However, as observable
from the table, there are 26 groups that are distinct and don’t fit in to any of
the 18 top columns. Those 18 are known as the Lie groups and the other 26
are aptly named the sporadic groups.
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To explain a bit more about Lie groups and give an example, they are a
special kind of group in that they are also manifolds. An object is said to be a
manifold if locally it looks like a subset of the real numbers or in other words
it is locally Euclidean. A concrete example of this would be the Earth, of
which the set of all points on the Earth constitutes a manifold, where we
accept that while it is ”globally” curved in nature, ”locally” for a small enough
area it is flat and we can hence assign a patch of coordinates to describe this
particular subset of the globe. This to say that we can map our small area to
the real numbers and quite fittingly the collection of all these maps is referred
to as the atlas. Below is a demonstration of such a coordinate patch:

An example of a Lie group would be the set of all n x n matrices with non-zero
determinant (which implies that they are invertible and hence satisfy the
inverse element condition of a group) denoted by GL(n, R ). This is known as
the general linear group. Our binary operation in this case is standard matrix
multiplication (which we know is associative) and we can see that the elements
are closed under it along with there being an obvious identity element.
If we now consider the sporadic groups, one stands out in particular in the
bottom right of the table. This happens to be what is called the monster
group (sometimes referred to as the Fischer-Griess group) and it is the largest
simple sporadic group that exists. A group having a large order isn’t very
special considering the infinite family of groups of factorial order (e.g our
previous example of 3! could easily be replaced with 10!) but nevertheless, the
monster’s order written out in full is a sight to behold:

808, 017, 424, 794, 512, 875, 886, 459, 904, 961, 710, 757, 005, 754, 368, 000, 000, 000
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Cycling back to groups being the representation of the symmetries of an
object, we recognise that there must be some object for which the monster
group does the same. This object, mathematicians have discovered, lives in
but isn’t limited to 196883 dimensions. In what is known as the monster
”character table” we see that in fact that it could be represented also in
21296876 and in 842609426 dimensions (and many many more). Next we have
the baby monster group which can be represented in 4371 dimensions and is of
order : 4,154,781,481,226,426,191,177,580,544,000,000. 20 out of the 26
sporadic groups in fact live within the monster group (more specifically they
are subquotients of the monster) with this collection being named ”the happy
family” whereas the other 6 (the 3 Janko groups, the Rudvalis, O’Nan and
Lyons group) are known as the ”pariahs”.

So why do these exist? Well in short, nobody really knows the answer which is
deeply unsatisfying. The good news however is that sporadic groups such as
the monster appear to be intimately related to modular functions which are a
subset of a special type of functions called modular forms. But what is a
modular form and why do we care about them? A modular form is described
as a function that maps the upper half space of the complex numbers (i.e
complex numbers which have a positive imaginary part) to the complex
numbers under the below conditions:

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ)

(
a b
c d

)
∈ SL2(Z)

SL2 denotes the special linear group which is almost identical to the general
linear group besides the fact that the matrices must have determinant 1
instead of simply being non-zero. Modular forms in fact were used alongside
elliptic curves to prove Fermat’s Last Theorem and furthermore they were
used by Maryna Viazovska to prove, quite bizarrely, that the agreed upon best
sphere packing method for an 8 dimensional space was in fact the most
optimal or, in other words, packed them in the densest possible way. A
modular function can be described as the case in which our exponent k equals
0 and hence the (cτ + d) term cancels out. The specific modular function that
we’re concerned with is Felix Klein’s (inventor of the infamous Klein bottle) j
function which has the below power series expansion along with a visual
representation of the function in the complex plane:

j(τ) = q−1 + 744 + 196884q + 21493760q2 + 864299970q3...

q = e2πi
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John McKay was the first to make the observation that the coefficient of q is
one more than the dimensions required to represent the monster group and
thus the moonshine theory was born. It was first met with skepticism since it
was initially marked down as a happenstance. However, after recognising that
each coefficient of the powers of q could be written as the sum of the possible
dimensions of the monster, it was clear that it wasn’t a mere coincidence.

196884 = 196883 + 1

21493760 = 21296876 + 196883 + 1

864299970 = 842609326 + 21296876 + 196883 + 196883 + 1 + 1

Richard Borcherds shed some light on this uncanny connection in 1992 where
he proved a conjecture pertaining to the relation outlined by John Conway
and Simon P. Norton in their 1979 paper ”Monstrous moonshine”.

Often we expect logical reasoning and proof to yield ”nice” values and results
but this is rarely the case. The existence of the sporadic groups and the
monster has undoubtedly demonstrated the sometimes lackluster and
confusing nature of maths while simultaneously showing the hidden and
unexpected connections between two areas of maths that could not be more
different. It is almost as if we’ve discovered islands of mathematics and the
ultimate goal is to collate them, however distant they may seem, into one
singular entity. As Henri Poincaré so eloquently expressed: ”mathematics is
the art of giving the same name to different things”.
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