2023 HSC Mathematics Standard 1 Marking Guidelines

Section I

Multiple-choice Answer Key

Question	Answer
1	C
2	B
3	A
4	D
5	D
6	A
7	C
8	D
9	C
10	B

Section II

Question 11 (a)

Criteria	Marks
- Provides correct answers for A and B	2
- Provides one answer, or equivalent merit	1

Sample answer:

$$
\begin{aligned}
A & =\$ 65000 \times 15 \\
& =\$ 975000 \\
B & =\$ 540000+\$ 715000+\$ 975000+\$ 525000+\$ 255000 \\
& =\$ 3010000
\end{aligned}
$$

Question 11 (b)

Criteria	Marks
- Provides correct answer, or equivalent merit	1

Sample answer:

$$
\begin{aligned}
\bar{x} & =\frac{\$ 3010000}{50} \\
& =\$ 60200
\end{aligned}
$$

Question 12 (a)

Criteria	Marks
- Provides correct answer	2
- Provides 1 dimension in metres, or equivalent merit	1

Sample answer:

Dimensions are 5.2 m by 5.94 m

Question 12 (b)

Criteria	Marks
- Provides correct answer	2
- Provides the area of the kitchen floor, or equivalent merit	1

Sample answer:

Number of tiles $=\frac{3.6 \mathrm{~m}}{0.4 \mathrm{~m}}=9$ tiles $\quad \frac{3.2 \mathrm{~m}}{0.4 \mathrm{~m}}=8$ tiles

Number of tiles $=9 \times 8$
$=72$ tiles

Question 12 (c)

Criteria	Marks
- Provides correct answer, or equivalent merit	1

Sample answer:

Number of boxes $=\frac{72}{10}$

$$
=7.2
$$

$\therefore 8$ boxes are needed.

Question 13 (a)

Criteria	Marks
- Identifies correct mode	1

Sample answer:

The mode is 9 .

Question 13 (b)

Criteria	Marks
- Identifies TWO features of the graph	2
- Identifies ONE feature of the graph	1

Sample answer:

- Negatively skewed data.
- An outlier at 1 .

Question 14 (a)

Criteria	Marks
- Provides correct answer	1

Sample answer:

$$
\begin{aligned}
\text { Speed } & =\frac{\text { Distance }}{\text { Time }} \\
& =\frac{150 \mathrm{~km}}{1.5 \mathrm{~h}} \\
& =100 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

Question 14 (b)

Criteria	Marks
- Provides correct answer	1

Sample answer:

30 minutes

Question 14 (c)

Criteria	Marks
- Provides correct graph	2
- Attempts to complete the graph	1

Sample answer:

Question 15 (a)

Criteria	Marks
- Completes the network diagram	2
- Provides a diagram that is substantially correct	1

Sample answer:

Question 15 (b)

Criteria	Marks
- Provides correct answer	1

Sample answer:

Kilometres travelled $=1040 \mathrm{~km}+3150 \mathrm{~km}$

$$
=4190 \mathrm{~km}
$$

Question 16

Criteria	Marks
- Provides correct solution	2
- Attempts to use the tan ratio, or equivalent merit	1

Sample answer:

$$
\begin{aligned}
\theta & =90^{\circ}-18^{\circ} \\
& =72^{\circ}
\end{aligned}
$$

$\tan 72^{\circ}=\frac{x}{120 \mathrm{~m}}$

$$
\begin{aligned}
x & =120 \mathrm{~m} \times \tan 72^{\circ} \\
& =369.322 \ldots \\
& =369 \mathrm{~m} \quad \text { (to nearest metre) }
\end{aligned}
$$

Question 17

Criteria	Marks
- Provides correct answer	2
- Attempts to substitute values into equation, or equivalent merit	1

Sample answer:

$P=\frac{10 \times 6-7.5 \times 2}{9}$
$=5$

Question 18 (a)

Criteria	Marks
- Provides correct answer	2
- Provides a path from A to D, or equivalent merit	1

Sample answer:

Path $A B F G D$

Answers could include:

Question 18 (b)

Criteria	Marks
- Provides correct answer with a correct reason	2
- Provides an explanation or spanning tree, or equivalent merit	1

Sample answer:

It is not a minimum spanning tree as $B C$ is not the shortest path to join C to the tree.

Question 19 (a)

Criteria	Marks
- Provides correct solution	2
- Substitutes 23 into the formula	1

Sample answer:

$$
\begin{aligned}
y & =0.936 x-8.929 \\
23 & =0.936 x-8.929 \\
x & =\frac{23+8.929}{0.936} \\
& =34.1121 \\
& =34^{\circ} \mathrm{C} \quad \text { (to nearest degree) }
\end{aligned}
$$

Question 19 (b)

Criteria	Marks
- Provides correct answer and justification	2
- Provides some relevant information	1

Sample answer:

It is an example of extrapolation as $34^{\circ} \mathrm{C}$ is outside the range of temperature.

Question 20

Criteria	Marks
- Provides correct solution	3
- Applies $1.5 \times I Q R$	2
- Finds the $I Q R$, or equivalent merit	1

Sample answer:

$$
\begin{aligned}
Q_{1} & =29 \\
Q_{3} & =45 \\
& \\
I Q R & =45-29 \\
& =16 \\
1.5 \times I Q R & =24 \\
Q_{3}+24 & =45+24 \\
& =69
\end{aligned}
$$

$58<69$
So 58 is NOT an outlier.

Question 21

Criteria	Marks
- Provides correct solution	3
- Uses the compound interest formula with either n or r correct	2
- Attempts to use the compound interest formula, or equivalent merit	1

Sample answer:

$$
\begin{aligned}
F V & =P V(1+r)^{n} \\
& =\$ 12000(1+1 \%)^{5 \times 4} \\
& =\$ 12000(1.01)^{20} \\
& =\$ 14642.280 \ldots \\
& =\$ 14642.28
\end{aligned}
$$

Question 22

Criteria	Marks
- Provides correct solution	4
- Calculates the pay for Monday to Saturday, or equivalent merit	3
- Calculates the pay for Monday to Friday, or equivalent merit	2
- Calculates the pay for one week-day, or equivalent merit	1

Sample answer:

Earnings (Monday to Friday) $=\$ 24.05 \times 4 \times 5$

$$
=\$ 481
$$

Earnings on Saturday	$=\$ 24.05 \times 1.5 \times 2.5$
	$=\$ 90.19$

Earnings on Sunday	$=\$ 24.05 \times 2 \times 3$
	$=\$ 144.30$

Total earnings for the week $=\$ 481+\$ 90.19+\$ 144.30$
= \$715.49

Question 23

Criteria	Marks
- Provides correct solution	3
- Calculates the fuel cost for one of the cars, or equivalent merit	2
- Calculates the number of litres used by the petrol car, or equivalent merit	1

Sample answer:

Petrol car $=(35000 \div 100) \times 8.6 \times \$ 1.87$
$=\$ 5628.70$

Electric car $=(35000 \div 100) \times 18 \times \$ 0.25$
$=\$ 1575$

Savings $=\$ 5628.70-\$ 1575$
$=\$ 4053.70$

Question 24 (a)

Criteria	Marks
- Provides the correct values of A and B	2
- Provides one value, or equivalent merit	1

Sample answer:

$$
\begin{aligned}
A & =\$ 5090.54 \times 0.6 \% \\
& =\$ 30.54
\end{aligned}
$$

$$
\begin{aligned}
B & =\$ 5090.54+\$ 30.54 \\
& =\$ 5121.08
\end{aligned}
$$

Question 24 (b)

Criteria	Marks
- Provides correct solution	2
- Attempts to apply the simple interest formula	1

Sample answer:

Simple interest $=\$ 5000 \times 0.62 \% \times 4$

$$
=\$ 124
$$

Question 25

Criteria	Marks
- Provides correct solution	2
- Attempts to use the compound interest formula	1

Sample answer:

Value in 8 years' time $=\$ 15000(1+5.3 \%)^{8}$

$$
\begin{aligned}
& =\$ 15000(1+0.053)^{8} \\
& =\$ 22673.482 \ldots \\
& =\$ 22673.48
\end{aligned}
$$

Question 26 (a)

Criteria	Marks
- Completes the table correctly	1

Sample answer:

Electricity used in a month (kWh)	0	400	1000
Monthly charge (\$)	40	140	290

Question 26 (b)

Criteria	Marks
- Graphs Provider A's charges	1

Sample answer:

Electricity used in a month (kWh)

Question 26 (c)

Criteria	Marks
- Provides correct answer	1

Sample answer:

They charge the same amount at 400 kWh .

Question 26 (d)

Criteria	Marks
- Provides correct solution	2
- Demonstrates some progress towards identifying the cheaper option,	1

Sample answer:

Provider B at 800 kWh charges $\$ 280$
Provider A at 800 kWh charges $\$ 240$
\therefore Provider A would be the cheaper option by $\$ 40$.

Question 27

Criteria	Marks
- Provides correct answer	2
- Calculates the time difference, or equivalent merit	1

Sample answer:

10 am	2 pm
\bullet	
Town A	\bullet
Town B	

Time difference is 4 hours.
$\therefore 11: 30 \mathrm{am}+2$ hours -4 hours $=9: 30 \mathrm{am}$

Question 28

Criteria	Marks
- Provides correct solution	2
- Identifies the necessary information from the table	1

Sample answer:

$6 \% \times$ daily intake $=19.1 \mathrm{~g}$

$$
\begin{aligned}
\text { Daily intake } & =19.1 \mathrm{~g} \div 6 \% \\
& =318.333 \ldots \mathrm{~g} \\
& =318 \mathrm{~g}
\end{aligned}
$$

Question 29 (a)

Criteria	Marks
- Provides the correct solution	2
- Identifies an angle in triangle $P X Y$, or equivalent merit	1

Sample answer:

NOT TO
SCALE

$$
\begin{aligned}
\angle P X Y & =180^{\circ}-120^{\circ} \\
& =60^{\circ} \\
X P & =15 \mathrm{~km} \times \cos 60^{\circ} \\
& =7.5 \mathrm{~km}
\end{aligned}
$$

Question 29 (b)

Criteria	Marks
- Provides the correct solution	2
- Calculates one of the acute angles in the triangle CXP, or equivalent	
merit	

Sample answer:

Let $\theta=\angle C X P$

$$
\begin{aligned}
\cos \theta & =\frac{7.5}{40} \\
\theta & =79^{\circ} 12^{\prime}
\end{aligned}
$$

\therefore Bearing of $C=180^{\circ}+79^{\circ} 12^{\prime}$

$$
\begin{aligned}
& =259^{\circ} 12^{\prime} \\
& =259^{\circ} \quad \text { (to the nearest degree) }
\end{aligned}
$$

Question 30

$\left.\begin{array}{|l|c|}\hline \text { Criteria } & \text { Marks } \\ \hline \text { - Provides the correct solution } & 3 \\ \hline \text { - Calculates the salvage value using the declining-balance method, } \\ \text { or equivalent merit }\end{array}\right) 2$

Sample answer:

Straight-line method:

$$
\begin{aligned}
S & =V_{0}-D_{n} \\
& =\$ 60000-\$ 3500 \times 3 \\
& =\$ 49500
\end{aligned}
$$

Declining-balance method: $S=V_{0}(1-r)^{n}$

$$
\begin{aligned}
& =\$ 60000(1-12 \%)^{3} \\
& =\$ 60000(0.88)^{3} \\
& =\$ 40888.32
\end{aligned}
$$

\therefore Declining-balance method would provide a lower salvage value.

Question 31

Criteria	Marks
- Provides correct solution	5
- Finds the area of the garden in square metres, or equivalent merit	4
- Finds the area of two sections in square metres, or equivalent merit	3
- Finds one area in square metres, or equivalent merit	2
- Applies the scale, or equivalent merit	1

Sample answer:

$1 \mathrm{~cm}=2 \mathrm{~m}$
\therefore Dimensions of triangle: 4 m by 8 m

$$
\text { Area }=\frac{1}{2} \times 4 \times 8
$$

$$
=16 \mathrm{~m}^{2}
$$

For L shape:
Each square is $4 \mathrm{~m}^{2}$
Area of all squares $=15 \times 4$

$$
=60 \mathrm{~m}^{2}
$$

$\frac{1}{2}$ Circle has radius 4 m

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times \pi \times 4^{2} \\
& =8 \pi \doteqdot 25.13 \mathrm{~m}^{2}
\end{aligned}
$$

Total area $=16+60+25.13$

$$
=101.13 \mathrm{~m}^{2}
$$

Volume $=101.13 \times 0.1$
$=10.113 \mathrm{~m}^{3}$

2023 HSC Mathematics Standard 1 Mapping Grid

Section I

Question	Marks	Content	Syllabus outcomes	
1	1	MS-M1 Applications of Measurement	MS11-3	
2	1	MS-F1	Money Matters	MS11-5
3	1	MS-M5 Scale Drawings	MS1-12-3	
4	1	MS-A3	Types of Relationships	MS1-12-6
5	1	MS-F3	Depreciation and Loans	MS1-12-5
6	1	MS-F1	Money Matters	MS11-5
7	1	MS-F1	Money Matters	MS11-5
8	1	MS-S2	Relative Frequency and Probability	MS11-9
9	1	MS-M5 Scale Drawings	MS1-12-3	
10	1	MS-M4	Rates	MS1-12-3

Section II

Question	Marks		Content	Syllabus outcomes
11 (a)	2	MS-S1	Data Analysis	MS11-2
11 (b)	1	MS-S1	Data Analysis	MS11-7
12 (a)	2	MS-M5	Scale Drawings	MS1-12-3
12 (b)	2	MS-M5	Scale Drawings	MS1-12-4
12 (c)	1	MS-M5	Scale Drawings	MS1-12-10
13 (a)	1	MS-S1	Data Analysis	MS11-10
13 (b)	2	MS-S1	Data Analysis	MS11-10
14 (a)	1	MS-M4	Rates	MS1-12-3
14 (b)	1	MS-M4	Rates	MS1-12-3
14 (c)	2	MS-M4	Rates	MS1-12-3
15 (a)	2	MS-N1	Networks and Paths	MS1-12-8
15 (b)	1	MS-N1	Networks and Paths	MS1-12-10
16	2	MS-M3	Right-angled Triangles	MS1-12-4
17	2	MS-A1	Formulae and Equations	MS11-10
18 (a)	2	MS-N1	Networks and Paths	MS1-12-8
18 (b)	2	MS-N1	Networks and Paths	MS1-12-10
19 (a)	2	MS-S3	Further Statistical Analysis	MS1-12-7
19 (b)	2	MS-S3	Further Statistical Analysis	MS1-12-10
20	3	MS-S1	Data Analysis	MS11-10
21	3	MS-F2	Investment	MS1-12-10
22	4	MS-F1	Money Matters	MS11-10
23	3	MS-M4	Rates	MS1-12-10

24 (a)	2	MS-F2 Investment	MS1-12-5	
24 (b)	2	MS-F1	Money Matters	MS11-10
25	2	MS-F2	Investment	MS1-12-5
26 (a)	1	MS-A3	Types of Relationships	MS1-12-6
26 (b)	1	MS-A3 Types of Relationships	MS1-12-6	
26 (c)	1	MS-A3 Types of Relationships	MS1-12-1	
26 (d)	2	MS-A3 Types of Relationships	MS1-12-1	
27	2	MS-M2 Working with Time	MS11-3	
28	2	MS-M1 Applications of Measurements	MS11-3	
29 (a)	2	MS-M3 Right-angled Triangles	MS1-12-4	
29 (b)	2	MS-M3 Right-angled Triangles	MS1-12-4	
30	3	MS-F3 Depreciation and Loans	MS1-12-10	
31	5	MS-M5 Scale Drawings	MS1-12-4	

